Corey Burton  cburton@sewanee.edu    
Coker George   gcoker@sewanee.edu    
Chauncey Gibson   cgibson@sewanee.edu    
Rouhiya Hakim   rhakim@sewanee.edu    
Bryant Hicks  bhicks@sewanee.edu    
Todd Jean-Pierre   tjpierre@sewanee.edu    
Rosie Jimenez   rjimenez@sewanee.edu    
Sung Kim   skim@sewanee.edu    
Tina Nguyen tnguyen@sewanee.edu    
Chinedu Nnorom   cnnorom@sewanee.edu    
Jorge Ramallo   jramallo@sewanee.edu    
Nicole Restrepo  nrestrepo@sewanee.edu    
Jordan Sanders  jsanders@sewanee.edu    
Alpana Senapati   asenapati@sewanee.edu    
Jason Seymour   jaseymour@sewanee.edu    
John Seymour   joseymour@sewanee.edu    
Tina Tieu  ttieu@sewanee.edu    
Talia Walker   twalker@sewanee.edu    
Whitney Whiteside   wwhiteside@sewanee.edu    
Will Zhou   wzhou@sewanee.edu    


WEEK 1 TEAMS
 TEAM 1 TEAM 2  TEAM 3  TEAM 4   TEAM 5
Tina T. Jordan  John  Sung   Rosie
 Corey  Whitney  Rouyiha Nicole   Tina N.
 Talia  Chinedu  Alpana  Coker Jorge 
 Chauncey  Todd Will  Jason  Bryant


Homework for Tuesday night (6/24) due Wednesday morning (one per team):

 

1) Find the general equation that predicts how many moves are required for n disks in the Tower of Hanoi game.

 

2) Use it to calculate the time it would take to complete a game with n = 25 disks, at a rate of 1 move per second. Is it longer or shorter than the average human lifetime (lets say 75 years)?

 

3) Use it to calculate the time it would take to complete a game with n = 64 disks, at a rate of 1 move per second. Is it longer or shorter than the accepted age of the universe (about 15 billion years)?

 

4) The 3 points, 1/2 distance chaos game rules produce the Sierpinski Gasket we saw in class. What is your prediction (emerging pattern) for a 4 points, 1/2 distance game (imagine using the corners of a square instead of a triangle)?

 

5) Read Chapter 3 (pages 81-118) of Gleick's Chaos and answer (type them in MS Word) the questions posted at:

http://www.sewanee.edu/physics/bridge/GLEICK.html